Smart Home case study: outdoors

Outdoor automation

Cameras

Modern IP-based cameras (for example Trendnet) can record in HD quality with a distance range of 30-40 metres even at night. Moreover, you can easily automate their control even without calling a technician by using a NAS device (such as the Synology J series). You can set many different sensor modes and recording modes. The camera footage should be continually screened on old tablets that are attached to the wall in some of the more high traffic areas of the house (for example the lobby or the kitchen). As for recording quality, I would suggest 1 fps rate. This produces okay-quality still images while requiring less storage, allowing you to keep the footage for as long as you need. You should also put up a sign, clearly visible from the outside, that your property is under CCTV surveillance/it has an alarm system/it has a dog that bites.

Garage gate and yard gate

Opening and closing doors/gates are essential functions of controlling your Smart Home. For example, when you open your garage gate, it’s good if your garage door also opens. Don’t use an IR gate as the emergency mechanism to stop the closing of the yard gate. If you have foot traffic by your house, people walking by may inadvertently keep the yard gate open for a long time.

Garden lights around the entrance

Using a motion sensor to turn the light on/off here is a no-brainer. You’ll probably need a sensor by the front door and one by the yard gate. The distance between the gate and the door can be covered by correctly timing the lights. Up-to-date systems “understand” sunrise and sunset, so if you set your motion sensor to only turn the light on when the sun is no longer out, the light will not be unnecessarily on.

Lights elsewhere in the garden

Security cameras come with night vision, so just for the cameras, you don’t need to have the lights on. Gardens don’t need constant lighting because you’re not out there all the time. In my house, you can control different mood lights for the garden manually at the Smart Home control unit.

Driveway heating

The problem is that if your driveway has thicker pavement, regular heating cables will not be able to heat it through. Even if you’re using thinner pavement, it takes at least 3-4 hours for the heating to start melting the snow. You can automate the driveway heating by connecting it to an outdoor temperature sensor. But I have yet to figure out how to tell the system when icing begins. So for now, I continue to use the device own internal sensors and controls. 

What doesn’t belong to the Smart Home system and why?

Alarm system

For the alarms, I’ve chosen a stand-alone system. We only have data exchange between the Smart Home and the alarm system. This means that once the alarm is turned on, the Smart Home manages the additional functions:

  • automatic moving of shades
    presence simulation by randomly switching lights

Irrigation system

Modern irrigation systems do pretty well watering your plants on their own in accordance with precipitation levels and the season. Since I needed a controller unit for the sprinklers to coordinate different irrigation zones anyway, I didn’t see the point in combining the irrigation system with the Smart Home.

Heating the house

The expectation for the heating system is to provide a constant temperature in the house with the help of thermostats. This means that there’s no point in using the Smart Home to control the heating. If your house has modern insulation, using the “holiday function” only makes sense if you’re away for weeks. And this can be turned on manually.

Coming up next: what’s in store for the Smart Home? Can this all be taken any further?

Smart Home case study: kitchen

Today the kitchen is seen as the center of the home which has to meet a lot of requirements at the same time. This means that automation and manual operation live together. Everyday scenarios are set based on that.

Everyday situations in the kitchen

Daytime: this is the default setting

  • The lighting should only be on if the outdoor light sensor deems it necessary. If possible, you should have some basic lighting that you can enhance with spotlights. In this scenario, the spotlight is not needed.

Flood light/spotlight needed: manual operation

  • Regardless of the time of the day it switches every light on

Sleeping/Night time: based on the time period

  • Only the night light is on. You’ll really appreciate this setting when you go to the kitchen for your midnight snack and you don’t have all the lamps shining in your sleepy eyes. You need this lighting during power failures, too.

 

 

Extra tips

  • The kitchen is the centre of your home which is why you the universal chargers for your gadgets (minimum one per family member) should be placed here. Let me give an example.
  • The number of kitchen appliances is rising, so min. 10 sockets should be available at the worktop, 6 definitely won’t be enough.
  • Additional local lighting is essential but they can also be manually operated (e.g.: cooker).

Utility room and/or larder

In a lot of households it is in the kitchen. Should it be a separate room, you should take into consideration the following aspects:

  • lighting controlled by a motion sensor,
  • socket with timer function for the iron + extra lighting+ tv, should the ironing take too long
  • humidity sensor might come in handy.

Coming up next: outdoor tips

Smart Home case study: bathroom and restroom

Everyday scenarios in the bathroom and in the restroom

Daytime

  • the lighting should only be on if the outdoor light sensor deems it necessary. If possible, you should have some basic lighting that you can enhance with spotlights. In this scenario, the spotlight is not needed.

Spotlight needed

  • the system turns on all lights regardless of the time of the day.

Night time

  • only the night light is on. You’ll really appreciate this setting when you go to the restroom at night and you don’t have all the lamps shining in your sleepy eyes. You need this lighting during power failures, too.

 

Extra tips:

  • water sensors to detect leaks can come in handy. They should be placed away from the bathtub so that they don’t get splashed.

  • the occupied sign is useful even in the family. Choose a door knob that can signal this.

  • if you use an electric towel warmer, it should come with a timer. You can set it to turn off automatically for example after 60 minutes.

  • Firing up your sauna should be connected to your smart home system. Even infrared saunas work better if they run for a few minutes before the session. Finnish saunas need 30-60 minutes to heat up before they can be used.

 

General lighting is controlled by the presence sensor. The presence sensors should be set at the sensor or at the home management system with delayed activation. This way lack of movement will not trigger the OFF mode immediately. For us, a delay of 120 sec works best.

Smart Home case study: bedroom

Everyday life in the bedroom

Daytime

  • Lighting should be on only when the external light sensor says so. All of the lights can be switched on. This type of lighting is not needed during power failures.

  • Blinds should roll up at wake-up time but not at weekends or when the school holiday option is set.

  • Play music option is allowed.

Before bedtime/watching TV

  • Only mood lighting is on, but only if it is necessary according to the external light sensor. For afternoon nap preparations any lighting is unnecessary with natural daylight.

  • This type of lighting is unnecessary at power failures.

  • Blinds should go down and full shading should be activated.

Sleep time

  • Only night light should be on. It is to be turned on during power failures.

  • Anti-burglary protection: when the sleep time mode is active and the night period (e.g.: between 10 pm and 5 am) is on, any external door or window is unlikely to be opened. In this case a so called external alarm can be activated, it’s quiet mode alarm focuses on the bedroom. In our home an unpleasant flashing light starts, as each light flashes and goes out simultaneously 15 times.

I got up first

  • Only the mood lighting is switched on, if and only if the external light sensor says so.

Shading: according to the previous settings

Miscellaneous

  • Music is to be manually controlled, that is, sleep time function is not used to stop it.
  • A universal charger is a compulsory component of the bedside table mainly for recharging smart phones (therefore the smart phone as a torch is always at hand)
  • The reading lamp is to be in the middle, it can be turned to either direction, so it won’t disturb the partner still asleep.
  • Wardrobe lighting is necessary only if the wardrobes are in an awkward or dark place.
  • Led candles can perfectly function as mood lighting, just 1 or 2 can provide enough light.

Coming up next: bathroom and restroom

Smart Home case study: the living room

Lighting: some basic concepts

Before we start discussing what options you have to automate your room, let’s look at some basic questions regarding lighting.

  • colour temperature: to put it simply, this means how “white” or “yellow” white light is. You can find a lot of reviews and marketing materials on this, but there’s only one sure-fire way to test it: using your own two eyes under appropriate light conditions. Practically, this means that if you check out something during the day, it’ll surely look different at night. You should aim at having at least similar light conditions in the trial room to what you’d like to have at home. Another typical source of colour temperature problems is when you buy products from different manufacturers and at the end they just don’t go together. This isn’t just about going to the store and buying a particular type of lightbulb of a particular brand. You should also think about, for example, that the carpenter also uses built-in lights in your furniture. Has anyone checked the colour temperature of those lights before the furniture was assembled and installed in your home??? It’s so irritating when your nicely designed light-composition is ruined by a strip of LED lights with a different colour temperature built-in your custom-made furniture.

  • controlling light intensity: make sure to check what kind of light intensity controls your house automation system will work with. You may be able to avoid some unpleasant surprise later.

  • direct and diffused light: if possible, you should only use direct lights for the ceiling and the reading lamps. With a little piece of cloth, you can easily turn a direct light into a diffused one. Direct light is disturbing even when dimmed because it shines sharply from a single point.

But let’s get back to discussing the living room. The living room is the Jolly Joker of rooms. For this reason, some of the functions can be controlled independently instead of as part of a set everyday scenario. Let’s go through these functions and then at the end, you’ll see whether programming complex scenarios in the living room makes any sense at all.

Lighting scenes

Lighting scenes reflect mood. I wouldn’t recommend more than 3-4 lighting scenes; nobody remembers more than that. (For example, watching TV – minimal light; Normal lighting with moderate light; I’m playing Lego and it needs a bright spotlight; Night time – floor lighting’s enough.) You can set your lighting scenes using a variety of the following light sources:

  • chandelier: “the crown” of the living room. It’s more for decoration so it’s almost always on. For this reason, it should have a dimmer switch.

  • lamp brackets: you should make sure that they provide diffused and not direct light. Picture lights also belong here.

  • floor lighting: used in stairwells, hallways and as night lights. I’d like to emphasise again that these shouldn’t be shining horizontally or upwards. They should be of minimal intensity, as dim as possible. I would have used phosphorescent paint for this purpose if it had been possible.

  • additional ceiling light: the main purpose is to increase brightness in spaces that the chandelier’s light doesn’t reach.

  • recessed ceiling lights: these are usually hidden behind gypsum plasterboard panels. Nowadays, colour LED strip lights are often used this way. If you plan on using them, you need to take into consideration that LED strips aren’t infinite in length. Anything longer than 5 and 10 meters must be put together from several strips.

Ventilation

The living room is where you entertain, and if you have a lot of people there, you may need to use the ventilation more intensively. The “party” setting for the ventilation can’t really be synchronised with the lights settings. You can have many people over for a friendly gathering or for an epic New Year’s Eve house party. So ventilation should be controlled separately with a manual switch. You can automate this by having CO2 sensors to monitor air quality.

Multimedia

Multimedia, or “we’re watching television”: current smart home systems increasingly support standards that have long been used for multimedia systems, allowing to control several appliances with a single remote. You can rest assured that your gadgets work together well, but the smart home, not so much. What causes the problem? The problem comes from the fact that smart homes are universal systems, and they must meet a number of requirements beyond standards with respect to user interfaces. In plain language this means that a well-designed remote control still beats any smart phone interface. So if you don’t want to waste time dinking around every day when you want to watch TV, and if you want to remain on speaking terms with your significant other, then stick to the old, universal, tried and tested remote control that comes with multimedia systems. (Logitech’s remote controls are also pretty good if you want to replace multiple remote controls with just one.) It is how the old-school remote control could tell the smart home to dim the living room chandelier because you’re watching TV. The solution comes from the fact that remote controls almost always handle infrared signals. This means that through an IR gateway, the remote can tell the smart home that the TV is on, so the system should switch to the “watching TV” mode.

Everyday scenarios in the living room

I’m watching TV: this is a scenario that should be programmed in the living room, because here several things should happen at the same time:

  • multimedia systems (TV, player, amplifier) turn on

  • if you use a projector, then the projector screen drops down and the projector turns on

  • if needed, the room is darkened (blinds or curtain)

  • lights that aren’t needed are turned off (including most of all the one that is reflected in the TV screen), and the lights are set to minimal. Of course only if you need any light at all – after all, at 11 am you’re unlikely to need any lamps in any season.

  • the music playing in the multiroom system is turned off

I’m not watching TV”: this scenario should be the default setting for your living room.

  • lights should behave in accordance with the time of day

  • the shading should adapt to the movement of the sun but closing blinds should not lock you out when you’re having a drink on the balcony (for example, a sensor for door opening should block the blinds)

Extra tip:

  • the chandelier should automatically control the additional ceiling lights. If the chandelier is set to close to maximum brightness, that means you want lots of light in the living room, so additional ceiling lights can automatically turn on.

Coming up next: the bedroom

Smart Home case study: children’s room

You shouldn’t start planning your rooms from the aspect of functional elements, such as lighting, heating, shading, and so on… let’s start from everyday situations and describe them to the contractor since it’s a liveable home you want at the end, not a completed tick list.

a) Daytime

  • Lighting is to be on only when it’s necessary according to the external light sensor. And if it’s is, all the lights can be on because the kids are playing. This lighting is not necessary during a power outage.

  • Blinds must go up at wake-up time except for weekends or when the school holiday option is set.

  • playing music is allowed

b) Before bedtime

(later on the case of “I’m on my computer, leave me alone”)

  • As for lighting only the mood lighting option is to be on, but only when the external light sensor says so. For example, during preparations for afternoon naps it’s not needed. It is unnecessary during a power outage.

  • Blinds are to go down and full shading is to be activated.

c) Sleep time

  • Only night lighting must be switched on. It is also needed during power failures.

  • Music stops and cannot be restarted.

General lighting (normal and before bedtime) is controlled by the presence sensor. If there is any motion in the room and there isn’t enough light according to external light conditions, lights are on. The presence sensors should be set at the sensor or at the home management system with a delayed activation. This way a lack of movement will not trigger the OFF mode immediately. For us, a delay of 120 sec works best.

Reading lamps are manually operated.

d) Shading

Here comes the complicated part, shading, which is controlled by similar principles in the other rooms used for sleeping.

  • Blinds must go up at wake-up time if it is not a weekend or the school holiday option is not active, but it also has to take into account that there is no strong wind.
  • If there is a strong wind, the blinds are to go down and are set in a middle position (allowing light in), BUT only when it is not sleep time.
  • Based on the orientation of the room the system should check every 15 minutes whether shading is needed
  • (orientation is crucial because in west facing rooms shading does not need to be dealt with before 3 pm.) it can decide whether level 1, 2 or 3 shading is the most optimal (level 3 is the closest to blinding but it is still not dark).
  • When there is no need for shading BUT no one is asleep OR there is no strong wind, blinds are to roll up.

To sum up

  • Usually there is no light switch, only ‘I am inside’, ‘before bedtime’ and ‘sleep time’ switches.

  • Blinds operate automatically according to everyday scenario / external light /wind, we’ve never had to touch it.

  • If you can leave the house through the room, the system should also check the door. The blinds should not be lowered when the door is open.

Coming up next: living room

Introduction: smart home tips for beginners

A few more things clients usually realise only in retrospect

  • many devices run on 12V instead of 220V. This means that you will need to use a power transformer. But transformers emit some noise, so you must think through where to hide your transformer and whether the noise there will bother you. Less noisy transformers are more expensive.

  • sensors are typically low voltage devices. You can have the sensors set up in a bus system or in a star network. The difference between the two is that in a bus topology, switches and sensors are, theoretically, connected to “one” wire. In a star topology, every switch and sensor (the typical inputs) has its own wire. From this description, the bus system may seem preferable because it needs fewer cables. This is not necessarily true. You should choose between the two topologies considering your needs and the size of your wallet. But star networks certainly require a lot of cables that must be run through the house. All of that wiring requires a lot of space. In today’s modern homes it is particularly challenging to ensure airtightness while running your wires through the house. What’s good for one is surely bad for the other. It’s physically impossible to have airtight sealing for a bunch of round cables running together. There are actually some solutions, but you must pay attention to the problem.

  • always get extra cables everywhere. Some things will be missing even with the most thorough planning.

  • wireless systems are all the rage now. But if your internal walls are light-weight drywalls attached to a metal framing, your home will not be particularly wireless friendly. The enclosed metal cage shields invisible waves. Reinforced concrete ceilings have the same effect. Make sure that you have cables fed through these walls and ceilings to avoid having to drill holes later.

Switches

Non-technical home-owners typically distinguish between three basic types of switches:

  • traditional switch: you can tell by looking at it that it is in the ON position. Its main disadvantage is that it’s not compatible with automatic operation. After all, the smart home can’t get up and walk over to flip the switch to the on/off position.

  • blind switch: I just call it the mouse in the wall. You hear a click when you press it, and when it’s released, it flips back to its original position. It has the advantage of allowing you to program a double click function as well (depending on your home’s system). This means that, for example, a simple dual switch can be used to produce four different scenarios.
  • multiple-switch switch: there are many different types; some even come with a built-in display. It gives you an opportunity to put even more buttons on the wall that only you will be able to use. Honestly speaking, I have yet to find one that’s really usable. Wherever we needed more buttons, we just placed several blind switches under one another.

Mounting height for switches:

  • about 120 centimeters: this is the classic height, but I have yet to figure out its benefit

  • 90 centimeters: this is where we placed the switches in our home. At this height, children can also reach the switches and get used to using them. A further advantage is that adults don’t need to raise their hand to operate the switch; you can simply hit it as you walk by.

PS for the switches: to mark the function of the switches, we bought some plain, solid-colour self-adhesive wallpaper and used craft punches. I needed the craft punch to make the shapes look nice. The buttons were given one or two moons, or one or two suns in accordance with the light intensity. Even kids understand that the two suns mean more light.

Things to know about networks

  • it makes sense to set up a gigabit network access point in every room of the house (maybe not in the restroom). Smart appliances are now appearing even for the kitchen. If they have a LAN port, always use a wired connection and not Wi-Fi. This will reduce electrosmog.

  • windows and drywalls vs Wi-Fi: you don’t really hear about this, but drywalls use metal studs, which really shield the Wi-Fi signal. The same is true for metal-framed windows. You either need to use a high-quality Wi-Fi router or be prepared to boost your Wi-Fi signal several times.

  • use static IP addresses for your devices. In larger households as many as 30-50 devices may connect to the internet. Make a list of your IP addresses for example in Google Docs to make it easy to find and update.

Coming up next: case studies by the room